Point Form	Integral Form
$\nabla \times \mathbf{H} = \mathbf{J}_c + \frac{\partial \mathbf{D}}{\partial t}$	$\oint \mathbf{H} \cdot d\mathbf{I} = \int_{S} \left(\mathbf{J}_{c} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{S} \qquad \text{(Ampère's law)}$
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint \mathbf{E} \cdot d\mathbf{I} = \int_{S} \left(-\frac{\partial \mathbf{B}}{\partial t} \right) \cdot d\mathbf{S} \qquad \text{(Faraday's law; } S \text{ fixed)}$
$\nabla \cdot \mathbf{D} = \rho$	$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{v} \rho dv \qquad \text{(Gauss' law)}$
$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0 \qquad \text{(nonexistence of monopole)}$

Table 13-1. Maxwell's Equations, General Set

For free space, where there are no charges $(\rho = 0)$ and no conduction currents $(\mathbf{J}_c = 0)$, Maxwell's equations take the form shown in Table 13-2.

Table 13-2. Maxwell's Equations, Free-Space Set

Point Form	Integral Form
$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t}$	$ \oint \mathbf{H} \cdot d\mathbf{I} = \int_{S} \left(\frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{S} $
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$ \oint \mathbf{E} \cdot d\mathbf{I} = \int_{S} \left(-\frac{\partial \mathbf{B}}{\partial t} \right) \cdot d\mathbf{S} $
$\nabla \cdot \mathbf{D} = 0$	$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = 0$
$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$

The first and second point-form equations in the free-space set can be used to show that time-variable **E** and **H** fields cannot exist independently. For example, if **E** is a function of time, then $\mathbf{D} = \epsilon_0 \mathbf{E}$ will also be a function of time, so that $\partial \mathbf{D}/\partial t$ will be nonzero. Consequently, $\nabla \times \mathbf{H}$ is nonzero, and so a nonzero **H** must exist. In a similar way, the second equation can be used to show that if **H** is a function of time, then there must be an **E** field present.

The point form of Maxwell's equations is used most frequently in the problems. However, the integral form is important in that it better displays the underlying physical laws.

Solved Problems

13.1. In region 1 of Fig. 13-4, $\mathbf{B}_1 = 1.2\mathbf{a}_x + 0.8\mathbf{a}_y + 0.4\mathbf{a}_z$ (T). Find \mathbf{H}_2 (i.e., \mathbf{H} at z = +0) and the angles between the field vectors and a tangent to the interface

Write H_1 directly below B_1 . Then write those components of H_2 and B_2 which follow directly from the two rules B normal is continuous and H tangential is continuous across a current-free interface.

Fig. 13-4

$$\mathbf{B}_{1} = 1.2\mathbf{a}_{x} + 0.8\mathbf{a}_{y} + 0.4 \qquad \mathbf{a}_{z} \quad (T)$$

$$\mathbf{H}_{1} = \frac{1}{\mu_{0}} (8.0\mathbf{a}_{x} + 5.33\mathbf{a}_{y} + 2.67 \qquad \mathbf{a}_{z})10^{-2} \quad (A/m)$$

$$\mathbf{H}_{2} = \frac{1}{\mu_{0}} (8.0\mathbf{a}_{x} + 5.33\mathbf{a}_{y} + 10^{2}\mu_{0}H_{z2}\mathbf{a}_{z})10^{-2} \quad (A/m)$$

$$\mathbf{B}_{2} = B_{z2}\mathbf{a}_{x} + B_{y2}\mathbf{a}_{y} + 0.4 \qquad \mathbf{a}_{z} \quad (T)$$

Now the remaining terms follow directly:

$$B_{x2} = \mu_0 \mu_{r2} H_{x2} = 8.0 \times 10^{-2} \text{ (T)}$$
 $B_{y2} = 5.33 \times 10^{-2} \text{ (T)}$ $H_{z2} = \frac{B_{z2}}{\mu_0 \mu_{r2}} = \frac{0.4}{\mu_0} \text{ (A/m)}$

Angle θ_1 is $90^\circ - \alpha_1$, where α_1 is the angle between \mathbf{B}_1 and the normal, \mathbf{a}_2 .

$$\cos \alpha_1 = \frac{\mathbf{B}_1 \cdot \mathbf{a}_z}{|\mathbf{B}_1|} = 0.27$$

whence $\alpha_1 = 74.5^{\circ}$ and $\theta_1 = 15.5^{\circ}$. Similarly, $\theta_2 = 76.5^{\circ}$. Check: $(\tan \theta_1)/(\tan \theta_2) = \mu_{r2}/\mu_{r1}$.

13.2. Region 1, for which $\mu_{r1} = 3$, is defined by x < 0 and region 2, x > 0, has $\mu_{r2} = 5$. Given

$$\mathbf{H}_1 = 4.0\mathbf{a}_x + 3.0\mathbf{a}_y - 6.0\mathbf{a}_z$$
 (A/m)

show that $\theta_2 = 19.7^{\circ}$ and that $H_2 = 7.12 \text{ A/m}$.

Proceed as in Problem 13.1.

$$\mathbf{H}_1 = 4.0\mathbf{a}_x + 3.0\mathbf{a}_y - 6.0\mathbf{a}_z \quad (A/m)$$

$$\mathbf{B}_1 = \mu_0 (12.0\mathbf{a}_x + 9.0\mathbf{a}_y - 18.0\mathbf{a}_z) \quad (T)$$

$$\mathbf{B}_2 = \mu_0 (12.0\mathbf{a}_x + 15.0\mathbf{a}_y - 30.0\mathbf{a}_z) \quad (T)$$

$$\mathbf{H}_2 = 2.40\mathbf{a}_x + 3.0\mathbf{a}_y - 6.0\mathbf{a}_z \quad (A/m)$$

$$H_2 = \sqrt{(2.40)^2 + (3.0)^2 + (-6.0)^2} = 7.12 \text{ A/m}$$

Now

The angle α_2 between H_2 and the normal is given by

$$\cos \alpha_2 = \frac{H_{x2}}{H_2} = 0.34$$
 or $\alpha_2 = 70.3^\circ$

Then $\theta_2 = 90^{\circ} - \alpha_2 = 19.7^{\circ}$.

13.3. Region 1, where $\mu_{r1} = 4$, is the side of the plane y + z = 1 containing the origin (see Fig. 13-5). In region 2, $\mu_{r2} = 6$. $\mathbf{B}_1 = 2.0\mathbf{a}_x + 1.0\mathbf{a}_y$ (T), find \mathbf{B}_2 and \mathbf{H}_2 .

